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Purpose: Temporal comparison of lesions might improve classification between benign and malig-
nant lesions in full-field digital mammograms (FFDM). The authors compare the use of volumetric
features for lesion classification, which are computed from dense tissue thickness maps, to the use of
mammographic lesion area. Use of dense tissue thickness maps for lesion characterization is advan-
tageous, since it results in lesion features that are invariant to acquisition parameters.
Methods: The dataset used in the analysis consisted of 60 temporal mammogram pairs comprising
120 mediolateral oblique or craniocaudal views with a total of 65 lesions, of which 41 were benign
and 24 malignant. The authors analyzed the performance of four volumetric features, area, and four
other commonly used features obtained from temporal mammogram pairs, current mammograms, and
prior mammograms. The authors evaluated the individual performance of all features and of different
feature sets. The authors used linear discriminant analysis with leave-one-out cross validation to
classify different feature sets.
Results: Volumetric features from temporal mammogram pairs achieved the best individual perfor-
mance, as measured by the area under the receiver operating characteristic curve (Az value). Volume
change (Az = 0.88) achieved higher Az value than projected lesion area change (Az = 0.78) in the
temporal comparison of lesions. Best performance was achieved with a set that consisted of a set
of features extracted from the current exam combined with four volumetric features representing
changes with respect to the prior mammogram (Az = 0.90). This was significantly better (p = 0.005)
than the performance obtained using features from the current exam only (Az = 0.77).
Conclusions: Volumetric features from temporal mammogram pairs combined with features from
the single exam significantly improve discrimination of benign and malignant lesions in FFDM
mammograms compared to using only single exam features. In the comparison with prior mam-
mograms, use of volumetric change may lead to better performance than use of lesion area change.
© 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4860956]
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1. INTRODUCTION

Computer-aided diagnosis (CAD) systems with temporal
analysis of mammograms have the potential to help radiol-
ogists in the interpretation of benign and malignant masses1

and to significantly improve radiologists’ accuracy.2

Mass lesions are defined with wide range of charac-
teristics such as density (fat containing, low density, iso-
dense, high density), margins (circumscribed, microlobular,
obscured, indistinct, spiculated), and shape (round, oval, lob-
ular, irregular).3 Depending on those characteristics lesions
can be classified as benign or malignant. Round lesions of low
density with circumscribed and well-defined margins usually

present a benign change. Presence of a fatty halo which is a
fine radiolucent line surrounding a mass in some cases might
as well be a benign sign.4 Malignant lesions are usually ir-
regularly shaped with a spiculated and indistinct boundary.
Change in the appearance of a lesion and its growth between
two mammographic screening examinations might be an indi-
cation of malignancy. On the other hand, benign lesions usu-
ally remain stable in appearance and size. Thus, changes in
the appearance and size of lesions might give valuable infor-
mation for their classification and temporal features may be
very useful for the development of CAD systems.

Few studies that use temporal information for classify-
ing lesions have been reported. Hadjiiski et al.5 used run
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length statistics (RLS) texture features, spiculation features,
and morphological features to discriminate between benign
and malignant lesion in digitized screen-film mammograms.
Their feature space consisted of the current RLS features, the
difference RLS features, the current and prior spiculation fea-
tures, and the current and prior mass sizes. The information on
the prior mammograms significantly ( p = 0.015) increased
the accuracy for classification of the masses from Az value
(area under the receiver operating characteristic curve) of 0.82
when only single exam features were used to Az value of 0.88
when temporal features were used.

Timp et al.6 designed two kinds of temporal features: dif-
ference features and similarity features. Difference features
indicated the relative change in feature values between prior
and current views. Similarity features measured whether two
regions were comparable in appearance. The classification
performance significantly ( p = 0.005) increased when using
temporal features compared to the single exam classification.
They obtained an average Az value of 0.74 without temporal
features and 0.77 with the use of temporal features. They used
digitized screen-film mammograms in their analysis.

In this study, we performed temporal comparison of
lesions in full-field digital mammograms (FFDM). We ex-
tracted temporal features that characterize change in the
lesion between two mammographic examinations. Our pro-
posed method has some important advantages. First, the anal-
ysis is performed using only FFDM mammograms. Other
studies on temporal comparison used digitized mammograms.
Second, we introduce volumetric change of a lesion which
is determined using dense tissue thickness maps. We devel-
oped four volumetric features that contain information about
the size of the lesion and that are robust considering the seg-
mentation of the lesion and the surrounding tissue. Moreover,
volumetric features overcome the limitations introduced when
measuring size of a lesion using only area, which is a two-
dimensional projection of the three-dimensional object. To
our knowledge, no other studies that include volumetric in-
formation in the temporal analysis of digital mammograms
have been reported.

2. MATERIALS AND METHODS

2.A. Dataset

Digital mammograms for this study were collected from
the Foundation of Population Screening Mid-West, The
Netherlands, where they were acquired with a Hologic Sele-
nia FFDM system. The dataset comprised 60 cases with mam-
mogram pairs consisting of craniocaudal (CC) and mediolat-
eral oblique (MLO) views taken in two subsequent screening
rounds. The most recent mammogram we denote as current
mammogram, and mammogram taken in the previous exam-
ination as prior mammogram. Average period between two
subsequent exams is 2 years.

All mammograms used in the study have a lesion that has
been proven as benign or malignant by biopsy performed on
the current mammogram. For this study, we only selected
cases in which a lesion was visible both in the current and

in the prior mammograms. The number of benign cases was
37 and the number of malignant cases was 23. There was a
total of 65 lesions, of which 41 were benign and 24 malig-
nant, i.e., all cases had one lesion visible, except four benign
cases and one malignant case which had two lesions visible
in both prior and current mammograms. Lesions in the cur-
rent mammograms are manually matched with the ones in the
prior mammograms.

In this study under the term lesion we consider masses, ar-
chitectural distortions, and focal asymmetries. We included
only lesions that are projected within the breast area, i.e.,
not overlapping with the pectoral muscle. We did not in-
clude lesions larger than 4 cm in the diameter since for
those lesions our automated segmentation routine was not de-
signed. The average size of lesions in current mammograms
was 1.58 cm2 and the smallest and the biggest lesions were
0.27 and 5.44 cm2, respectively. All FFDM mammograms
were downsampled to a resolution of 200 μm using bilinear
interpolation.

2.B. Feature computation

The center location of each region that contained a lesion
was computed as the geometrical center of the contour delin-
eated by the radiologist. The computed center of a lesion was
used as a seed point for automated segmentation. The segmen-
tation method was based on the region boundary information
and gray level distribution in a region of interest around the
lesion. The best contour was selected using an optimization
technique known as dynamic programming. The method is
explained in detail in Ref. 7.

For each current and prior segmented region, nine different
features were calculated to characterize the lesion. The sum-
mary of the features is presented in Table I and feature com-
putation is explained in detail in Subsections 2.B.1–2.B.5.

2.B.1. Spiculation feature

Since malignant lesions have stellate pattern with lines ra-
diating from the center of the lesion, we computed a feature

TABLE I. Summary of used features.

Feature Description

f 1 Mean value of concentration of spicules (feature f 1)
inside segmented lesion

Contrast Absolute contrast between the lesion and the
surrounding area

Fourier descriptor Shape feature based on Fourier descriptors
Area Area of segmented lesion
Compactness Shape feature measuring efficiency of contour to

contain a given area
Vol Volume of segmented lesion
VolDilRing Volume normalized with a dilated ring (width

2 mm) around the lesion
VolDilCont2 Volume normalized with a dilated contour that is

2 mm from the lesion
VolDilCont3 Volume normalized with a dilated contour that is

3 mm from the lesion
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for detection of spiculations.8 The spiculation feature that de-
tects stellate patterns of straight lines was derived from the
map of pixel orientations which was computed using direc-
tional second order Gaussian derivatives. The computed fea-
ture f 1 was the normalized measure of the fraction of pixels
with a line orientation toward the center of the lesion. The
feature used in our study was f 1 which is the mean value of
f 1 inside the segmented lesion.

2.B.2. Contrast feature

One of the commonly used features in CAD systems is
contrast.9 In our analysis, we used contrast computed as the
difference between mean intensity of the lesion and mean in-
tensity of the surrounding area.

2.B.3. Fourier descriptor

Fourier descriptor is a shape feature based on the Fourier
transform of the object boundary sequence. Irregular contours
result in larger values and round contours result in smaller
values. The feature computed in our study was based on nor-
malized Fourier descriptors defined in Ref. 10.

2.B.4. Area and compactness

Area is a commonly used feature for representing the size
of a lesion in CAD systems.9 The computation of area of
a lesion was straightforward and it was obtained from the
segmented region. Compactness or perimeter-to-area ratio is
a simple measure that expresses efficiency of a contour to
contain certain area. Compactness was computed using the
expression

C = P 2

A
, (1)

where P is the perimeter and A the area of the segmented
lesion.

2.B.5. Volumetric features

As it was shown in our previous work,11 volume might be
a better feature than area for representing size of a lesion and
for distinguishing between benign and malignant lesions. Vol-
ume as a feature is more robust compared to area. Thus, if le-
sions are embedded in fatty tissue, the volume estimates will
not be affected even if a lesion is oversegmented since the
dense tissue thickness around the lesion will be zero. In or-
der to compute the volume of a lesion, we first determined the
dense tissue thickness map. The thickness of dense tissue was
estimated using method proposed previously.12 The method is
based on a physical model of image acquisition and assumes
that the breast is composed of two types of tissue, dense fi-
broglandular tissue and fatty tissue. For each type of tissue,
the effective attenuation coefficient was computed as a func-
tion of the anode and filter material, tube voltage and breast
thickness. The thickness of dense tissue at location r was then
computed as

hd (r) = − 1

μd,eff − μf,eff
ln

ḡ(r)

ḡf

, (2)

where μf, eff and μd, eff are effective attenuation coefficients
for fatty and dense tissue, respectively, ḡ(r) is pixel value of
tissue at location r, and ḡf is the mean value of fatty tissue
determined in a reference region in the mammogram.

Volume of the lesion was computed by multiplying ob-
tained dense tissue thickness hd(r) at location r in the lesion
region S with the size A0 of a pixel as

V = A0 ·
∑

S

hd (r), (3)

where the pixel size A0 used in our study is 0.02 × 0.02 cm.
In order to correct the volume of a lesion for overlapping

dense tissue, we normalized lesion volume and thereby ob-
tained three additional volumetric features. We defined three
regions around the lesion as depicted in Fig. 1 which were
used for normalizing the volume of the lesion.

The first region R1 formed a dilated ring or a band around
the lesion and contained all pixels within the distance of 2 mm
from the border of the lesion. The second region R2 was a di-
lated contour that is 2 mm from the segmented lesion border.
The third region R3 was also a dilated contour, but unlike the
contour that defines the region R2, the contour in the region
R3 was 3 mm from the segmented lesion border.

The three normalized volumetric features were computed
as

Vi = A0 ·
∑

S

(hd (r) − hd,Ri
), (4)

where i ∈ [1, 2, 3], A0 is the pixel size, hd(r) is dense tissue
thickness at location r in the region S, and hd,Ri

is the average
dense tissue thickness in the observed region.

2.C. Temporal features

We designed temporal features to characterize temporal
change and to discriminate between benign lesions, which
generally do not change much in the interval between screen-
ings, and malignant lesions, which usually grow between
two mammographic examinations. Each temporal feature was
computed as relative difference

ft = fc − fp

fp

, (5)

where fc and fp are features from current and prior mammo-
gram, respectively. We will refer to those features as temporal
feature, current feature, and prior feature in the remainder of

FIG. 1. Scheme of regions defined for normalizing volume.
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this paper. All features were computed per lesion by averag-
ing over views in which the lesion is visible, i.e., averaging
over CC and MLO views.

2.D. Experiments

We analyzed the individual discriminative power of nine
features computed from current and prior mammograms as
well as their temporal change. Each feature was used to com-
pute receiver operating characteristic (ROC) curve and the
value of the area under the ROC curve (Az value) using the
ROCR package.13

We assessed the use of the temporal information compared
to using only single exam information. We combined cur-
rent and temporal features in different feature sets and ana-
lyzed the improvement in the classification performance of
single exam features when used together with temporal fea-
tures. Linear discriminant analysis with leave-one-out cross
validation was used for the classification. Classification per-
formance was analyzed using ROC curves and Az values. The
significance of differences between ROC curves was assessed
by bootstrapping with 1000 stratified replications using the
pROC package14 and the criterion for significance was ad-
justed using the correction for multiple comparisons accord-
ing to Bonferroni-Holm.15

3. RESULTS

3.A. Feature values

Figures 2–4 present boxplots for the prior, current, and
temporal features normalized to zero mean and unit stan-

dard deviation. The bottom and top of the box are the first
and third quartiles, and the band inside the box presents the
median. The ends of the whiskers represent the lowest da-
tum still within 1.5 interquartile range of the lower quartile
and the highest datum still within 1.5 interquartile range of
the upper quartile. All points that are outside the whisker are
outliers.

The boxplots are depicted for benign and malignant lesions
and show the difference between the two classes and the ten-
dency of feature values to change in time.

From the boxplots with temporal features that present the
change of a lesion during a time period it can be noticed
that the median is higher for almost all temporal features de-
rived for malignant lesions compared to those for benign le-
sions which indicates that malignant lesions change more in
time. In most cases, benign lesions do not change. On aver-
age, malignant lesions are larger and have higher values of
most features compared to the lesions one screening round
earlier.

Figure 5 presents an example of a segmented malignant
mass in a mammogram pair with the corresponding values of
volume and area of the lesion. It can be noticed that area and
volume of the lesion both increase between the two exams.
When comparing the measurements in CC and MLO views,
there is more agreement between the computed volumes than
in the area measurements.

3.B. Individual feature performance

In order to evaluate individual performance of each tem-
poral feature, current feature, and prior feature, we performed

−2 −1 0 1 2 3 4

f1, benign

f1, malignant

Contrast, benign

Contrast, malignant

Fourier descriptor, benign

Fourier descriptor, malignant

Area, benign

Area, malignant

Compactness, benign

Compactness, malignant

Vol, benign

Vol, malignant

VolDilRing, benign

VolDilRing, malignant

VolDilCont2, benign

VolDilCont2, malignant

VolDilCont3, benign

VolDilCont3, malignant

Feature values

Individual prior features for benign and malignant lesions

FIG. 2. Boxplot of normalized feature values for benign and malignant lesions computed from prior exams.
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FIG. 3. Boxplot of normalized feature values for benign and malignant lesions computed from current exams.
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Individual temporal features for benign and malignant lesions

FIG. 4. Boxplot of normalized temporal feature values for benign and malignant lesions computed as difference between current and prior exams.
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(a) A=0.34cm2; V=0.26cm3 (b) A = 0.77cm2; V = 0.21cm3

(c) A = 1.32cm2; V = 1.18 cm3 (d) A = 1.65cm2; V = 1.20cm3

FIG. 5. Example of segmented malignant lesion and corresponding values
of area and volume in a temporal left mammogram pair and magnified lesion
region in the lower right corner: (a) prior left mammogram in MLO view;
(b) prior left mammogram in CC view; (c) current left mammogram in MLO
views; (d) current left mammogram in CC view.

ROC analysis. Obtained Az values with the corresponding
95% confidence intervals (CI) are presented in Table II.

The best individual performances were achieved by volu-
metric temporal features with their Az values of above 0.84.
The temporal change of feature VolDilRing, which is volume
normalized with a dilated ring around the lesion, achieved
performance of Az = 0.88. The worst performance among
temporal features was achieved by the compactness feature
with Az value of 0.62.

When observing features from the current mammogram
the best performance was achieved by the contrast feature
with an Az value of 0.74. Very poor performance was obtained

TABLE II. Value of area under the ROC curve (Az) for the individual tempo-
ral, current, and prior features with 95% CI. The bootstrapped CI is based on
1000 replications.

Az value (95% CI)

Feature Temporal Current Prior

f 1 0.66 (0.52–0.79) 0.73 (0.59–0.84) 0.67 (0.53–0.80)
Contrast 0.78 (0.65–0.90) 0.74 (0.61–0.86) 0.53 (0.39–0.70)
Fourier descriptor 0.74 (0.60–0.86) 0.55 (0.40–0.70) 0.63 (0.49–0.76)
Area 0.78 (0.64–0.89) 0.56 (0.42–0.70) 0.63 (0.48–0.76)
Compactness 0.62 (0.47–0.77) 0.55 (0.40–0.71) 0.69 (0.54–0.83)
Vol 0.84 (0.72–0.93) 0.57 (0.42–0.71) 0.63 (0.48–0.76)
VolDilRing 0.88 (0.77–0.95) 0.63 (0.48–0.77) 0.63 (0.49–0.77)
VolDilCont2 0.87 (0.77–0.94) 0.64 (0.50–0.78) 0.62 (0.47–0.75)
VolDilCont3 0.87 (0.77–0.95) 0.64 (0.50–0.78) 0.62 (0.48–0.76)

using Fourier descriptor and compactness, with Az values of
0.55.

For the features from the prior mammogram, the best per-
formance was obtained by using the compactness feature with
Az value of 0.69 and the worst performance was obtained by
using the contrast feature with Az value of 0.53.

3.C. Combination of current and temporal features

Features from the current exam were combined with
temporal features and the obtained results are presented in
Table III. The combination of all nine features from the cur-
rent exam (current feature set) achieved a performance of
Az = 0.77. When adding all nine temporal features to the
current feature set the achieved classification performance
increased to Az = 0.86. Adding only one temporal feature,
namely, temporal area change, to the current feature set in-
creased the performance to Az = 0.85. The best performance
was achieved by combining all four temporal volumetric fea-
tures with the current feature set as presented in Fig. 6. The
obtained performance was Az = 0.90.

After applying the Bonferroni-Holm correction for multi-
ple comparisons, the results showed that the combination of
all four temporal volumetric features with the current feature

TABLE III. Combination of current and temporal features and their perfor-
mance expressed with Az value and 95% CI. The bootstrapped CI is based on
1000 replications. Last column includes statistical difference expressed by
p-value between the observed feature set and set with only current features.

Feature set Az value (95% CI) P-value

All current features 0.77 (0.65–0.88) . . .
All current features and all nine temporal
features

0.86 (0.73–0.95) 0.141

All current features and temporal area
feature

0.85 (0.74–0.94) 0.058

All current features and temporal area
and contrast feature

0.85 (0.75–0.93) 0.140

All current features and four temporal
volumetric features

0.90 (0.82–0.97) 0.005

Medical Physics, Vol. 41, No. 2, February 2014
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FIG. 6. Performance of the current feature set (Curr) and set with the
combination of current feature set and four temporal volumetric features
(Curr_TempVol).

set performed significantly better (p = 0.005) compared to the
performance of single exam features.

4. DISCUSSION

As has been shown previously,11 volume as a feature char-
acterizes lesion size independently of mammographic projec-
tions and leads to more consistent size estimates than area
based measures when comparing views. The correlation coef-
ficient between area based lesion size in CC and MLO views
was 0.70, while the lesion size computed from volume esti-
mates lead to a correlation of 0.83. These results suggested
that volume might be a more effective feature than area for
the analysis of the temporal change of lesion size.

In this study, we compared the performance of lesion vol-
ume change to that of lesion area change in the task of classi-
fying benign and malignant breast lesions. We hypothesized
that temporal volumetric features are more efficient in dis-
criminating benign and malignant lesions compared to tem-
poral area change. Moreover, we hypothesized that inclusion
of temporal volumetric features in a set of features obtained
only from the current exam would improve classification per-
formance. These hypotheses are supported by our results.

We computed volume and three normalized volumetric
features using dense tissue thickness maps, which were com-
puted from full field digital mammograms archived in raw for-
mat. By normalizing volume, we tried to eliminate the influ-
ence of dense tissue overlapping the lesions of interest. The
fact that the normalized volume features had better individual
performance than the uncorrected volume (Table II) indicates
that normalization was helpful. The temporal change of nor-
malized VolDilRing feature seemed to be the most relevant
one, since volume feature is not expected to work well when
there is overlapping dense tissue. The normalized VolDil-
Cont2 and VolDilCont3 features are variations on VolDilRing

but may be less stable because there are less pixels involved
in computing the normalization.

Some prior features seem to be better (in the terms of larger
Az) compared to the current features (Table II). However, this
result should be interpreted with caution, since there is a bias
introduced by the selection of masses visible on priors: only
masses that looked suspicious on the current mammograms
are included, which is why the cases were recalled. Thus, ma-
lignant lesions are smaller than benign on the prior mammo-
gram which might have influenced the results.

By adding the temporal volumetric features to features
computed from the current exam, a significant increase in
classification performance could be obtained. Thus, we may
conclude that volumetric change of a lesion between two ex-
ams is a valuable feature for discriminating benign and ma-
lignant lesions in FFDM.

The limitation of this study is relatively small size of
our sample. Whether there is an advantage of using volume
change in the investigated task should be investigated with
more data in a follow-up study. Such a study should also in-
clude lesions that were not visible on the prior mammogram,
where a measure of volume change may be defined by assum-
ing that at the previous screening the lesion was smaller than
some threshold value and was therefore not visible.

In this study, we have shown that processing of dense tis-
sue thickness maps as opposed to processing of the original
intensity images is a viable approach. Results indicate that
this approach may lead to superior results of computer aided
diagnosis systems. An important advantage of the method we
presented is that by converting mammograms to dense tis-
sue thickness maps all subsequent analysis is made invariant
to the x-ray machine and acquisition parameter settings used
when the mammograms were acquired. This may make CAD
algorithms more robust in practice.
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